
Journal of Statistical Physics, Vol. 23, No. 2, 1980 

On the Krook-Wu Model of the Boltzmann Equation 
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The distribution function of the Krook-Wu model of the nonlinear Boltzmann 
equation (elastic differential cross sections inversely proportional to the relative 
speed of the colliding particles) is obtained as a generalized Laguerre polynomial 
expansion where the only time dependence is provided by the coefficients. In a 
recent paper M. Barnsley and the present author have shown that these coefficients 
are recursively determined from the resolution of a nonlinear differential system. 
Here we explicitly show how to construct the solutions of the Krook-Wu model 
and study the properties of the corresponding Krook Wu distribution functions. 
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1. I N T R O D U C T I O N  

Recent ly  K r o o k  and W u  r have p rov ided  a model  o f  the nonl inear  
Bo l t zmann  equa t ion  o f  a spa t ia l ly  homogeneous  and  i so t ropic  gas where the 
elast ic  cross sect ion o f  the b ina ry  elastic coll is ions is inversely p r o p o r t i o n a l  to 
the relat ive speed.  Tjon  and  W u  (21 made  the fur ther  a s sumpt ion  that  the 
genera t ing  func t iona l  o f  the Bol tzmann  normal i zed  momen t s  M,( t )  is the 
Lap lace  t r ans fo rm of  a new d is t r ibu t ion  funct ion which also represents  a 
mode l  o f  the Bo l t zmann  equat ion .  In  very recent  papers  Barnsley and  
Cornille~3) showed tha t  the T j o n - W u  d is t r ibu t ion  funct ion can be expanded  in 
a series o f  s t anda rd  Laguer re  po lynomia l s  L ,+2(x  ) (x = v2/2, v being the 
velocity)  in such a way tha t  the only t ime dependence  is p rov ided  by the 
coefficients a,(t). F u r t h e r  it was shown ~3) tha t  these a,(t), which are l inear  
combina t ions  o f  the Mn(t), can be recursively ob ta ined  f rom the resolut ion  o f  
a non l inea r  different ial  system. 

In  this pape r  we s tudy  direct ly  the K r o o k - W u  d is t r ibu t ion  funct ion 
f (v ,  t) withou t  the a s sumpt ion  shared  by  the T j o n - W u  model .  I f  we define 

(2~)3 /2 f ( / ) ,  t )  = F ( x  = I)2/2, t) 
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we show that F has an expansion in generalized Laguerre polynomials 
L~/2)~.+ 2 ~J with the same coefficients a.(t) as in the previous Tjon-Wu model 

F(x, t)e x = 1 + i (-1)"a.(t)L<.~)(x) (1) 
n - - O  

It follows that we can use the results of the previous analysis r for the a.(t) and 
replace Lp(x) by L(pl/Z)(x) for the study of the solutions of the Krook Wu 
model. In Section 2 we recall the formalism and establish the expansion (1). In 
Section 3 we give some sufficient conditions for the existence of F(x, t) from 
initial conditions at t = 0. Taking great advantage of the generating 
functional of the Laguerre polynomials L(a/Z)(x) [in order to start with 
positive distribution functions F(x, 0) at t = 0], we study in Section 4 some 
classes of solutions F(x, t). 

2. THE F O R M A L I S M  A N D  THE GENERALIZED 
LAGUERRE EXPANSION OF F(x,t) 

We start with the generating functional G of the normalized moments 
M.(t) corresponding to the Krook-Wu ~1) distribution function f(v,  t): 

4~2"n ! f o  m.(t)  - (2n + 1)! f(v,  t)v 2"+2 dv (2) 

G(~, t) = ~ ~"M.(t) (3) 

f can be written as a transform of G 

G(~, t) = 4~ vZf(v, t) ~ dv (4) 

which does not appear very simple to invert. By a change of variable 

(2~z)3/zf(v, t) = F(x --: v2/2, t) 

and using the identity 

22"+1n!/(2n + 1)! = F(�89 + ~)]-1 

we can rewrite Eqs. (2), (3): 

= [ r (n  + 33-1 J o  x"+ !/2F(x' t )dx (2') M.(t) 

G(~, t) = F(x, t) F(m + ~) dx (4') 

In the following we always consider F. The M.(t) must satisfy well-defined 
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constraints: conservation of mass and energy, and the requirement of a 
Maxwellian distribution at equilibrium, 

Mo(t)  - M l ( t  ) - 1, lim M.( t )  = 1 (5) 
t--+ 09 

As in Ref. 3, let us introduce new functions a.(t) associated with M.(t): 

n+2 
a.(t) = ~ ( -  1)"cq.+ zM.+ z_q(t) (6) 

q=0 

where C. q are the usual binomial coefficients and G can be rewritten [taking 
into account Eq. (5)] 

1 i G(~, t) -- 1 - ~ + a.(t)~.+2(1 _ ~).+3 (3') 
n=O 

From the definition of the F function it is easy to see that the inverse transform 
of  the first term of Eq. (3') is just e-X: 

~ ;  xn+ 1/2~n 
1 ~" e -x 

This suggests the form 

F = e -x  + ~ l.+2(x)a.(t) 
n 

where the I. have to be determined and must satisfy 

fn+2 fO ~Xra+ l/2 ~m 
k > + 3  -= = 2 e c:+5, Ir < 1 

(1 

Finally our problem for/~ is reduced to finding the inverse Mellin transform 

f f  r + 1/r2 - -  

dx F(m + 3/2) C,." 

for integer m values. We obtain (a) 

f;e_xL(1/2)(x)x m+1/2 = {oCm"(- 1) ~ i f n < . m  
F(m + 3/2) if n > m 

so that F has an expansion with generalized Laguerre polynomials 

e~r(x, t) = I + ~ ( -  1)"L(,~2z)(x)a,(t) 
n=O 

L(o 1 / 2 ) =  1 (la) 

p-1 (rn + ~)(rn + ~).-. (p -- �89 + �89 -k ( -  x)p 
L~X/~(x )=  Y~ ( - x )  ~ - _ _  

.,=o m! (p -- m)! p] 
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In (la) the coefficient of L(01/2) is 1, due to the constraint M 0 = 1, and the 
coefficient of L (1/2) is zero, due to Mo(t ) - Ml( t  ) -= 1. From the explicit 
expression of the L(,I/Z)(x) in powers of  x we can rewrite eXF(x, t) as a power 
series (assuming that we can invert the order of  summations) 

(-x)~ 
eXF(x, t) = 1 + Ho(t ) + ~ Hq(t) 

q = l  (~)(~)(~.7~q + �89 

Ho(t ) = ~ ( -  1)nan(t)~n 

1 
Hq(t) =q~.Z (-1)'2,a,(t)(n + 2)(n + l ) . . - (n  + 3 - q) 

2n = (2n + 5)!! 2 - " -2 [ (n  + 2)!]  -1 

(lb) 

which can be justified only after a study of the properties of  the {an} or of the 
{Hq}. Sufficient conditions for absolute convergence and t ~ [0, 0o] will be 
established in the next section. 

From Eq. (1) we see that the nontrivial dependence of the K r o o k - W u  
distribution functions is entirely provided by set {a,(t)} and we recall briefly 
the method given in Ref. 3 in order to construct these {G(t)} from initial values 
{a,(0)}. Krook  and Wu (1) have established that G satisfies a nonlinear partial 
differential equation (nl pde) 

(7) + (46) = G z 

Let us define a new variable u such that 4(1 + u-  1) = 1, and a new generating 
functional H(u, t) of the moments M,(t) or an(t) 

H(u, t) = 1 + (1 - ~)G(~, t) = ~ a,(t)u "+z 
n =0  

(8) 

Due to Eq. (7), H also satisfies a nl pde, which can be written for the expansion 
(8) 

~ u a+" (3 + n) ~ a.(t) + (n + 1)a.(t) - [ ~  u'+2G(t)-I 2 (9a) 

Equating to zero the coefficients of  u" + 2, we get a nonlinear differential system 
for the a, 

d 
(3 + n ) ~  a,(t) + (n + 1)a,(t) - ~ a,,(t)ap(t) (9b) 

m + p = n - 2  



On the Krook-Wu Model of the Boltzmann Equation 153 

which can be solved recursively 

a 0 (t) = a0(0) exp( - t/3), a I (t) = a 1 (0) exp( - t/2) 

a.(,) = exp n + 3 t a,(O) + ~ eXP~n-~- ~ t' 

x ~ a.,(t')a~(t')(n + 3) -1 dt'[ (9c) 
m + p = n  2 J 

The set of  values {an(0)} correspond to arbitrary integration constants and 
lead to the different possible solutions {a.(t)}. It was shown that a.(t) 
decreases at least like e x p { - [ ( n + l ) / ( n + 3 ) ] t }  and consequently 
l im, .~  a.(t) = 0. It follows from (la) that at fixed x, limt~ ~ F(x, t) = e -x, 
which represents a Maxwellian behavior. Finally we recall that the {M.(t)} 
can be reconstructed from the a.(t) 

n - - 2  

M . ( t ) = l  + ~ C.qa. 2-q(t), n / > 2  (10) 
q - O  

3. EXISTENCE OF THE D ISTRIBUTION FUNCTION e=F(x,t) 
EXPRESSED EITHER WITH THE POWER SERIES ( l b )  OR 
WITH THE GENERALIZED LAGUERRE SERIES ( l a )  

As in Ref. 3 for the T jon-Wu model, we can, for the study of the existence 
of the K r o o k - W u  distribution function, consider two different approaches. 
The methods for the two models being essentially the same, with the only 
technical change that the L~ ~ must be replaced by the L~ ~/2), we sketch very 
briefly the salient results. 

In the first approach,  taking into account the orthogonal properties of  
the generalized Laguerre polynomials (with well-defined weight functions), we 
construct a Hilbert space of functions expanded as in (la) in the Laguerre 
polynomial basis and try to find sufficient conditions in order that the solution 
stays in the space at later time if it is present at t = 0. We have to define an 
inner product and the key property is to find that the solutions are square- 
integrable in a well-defined way. Let us call . ~  the Hilbert space of real-valued 
functions 0 ~< x < Go defined by the symmetric inner product 

(f, 9) = [ :  f(x)g(x)w(x) dx, f ,  g E 

where w(x) = e-Xx 1/z is the weight function of the generalized L(. I/z) Laguerre 
polynomials. Taking into account the orthogonal property 

f :  w(x)L~/2)(x)L~i/2)(x) dx = + ~)/p! 6,.pF(p 
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we could introduce a complete  o r thonorma l  basis for YF with the functions 
-~w,. Ta - 1/2 We assume that  F(x, O)e ~ s Yf can be expanded in L~I/2)(x)[F( m + 2, /" ' . ,  �9 

this basis. Fur ther ,  we assume that  the momen t s  M0 -= M1 = 1 are satisfied. It  
follows that  F(x,O)e x has an expression like ( la)  with no componen t  
corresponding to L~ 1/2). We define F(x, t)e ~, where the componen t s  at t r 0 are 
given by the solutions (9c) of  the system (9b), and which is expanded in the 
same basis (la).  We want  to find condit ions at t = 0 such tha t  the n o r m  ofFe x 
at t r 0 remains finite. I f  we define 

; w ( x ) F 2 ( x ,  t)e 2x dx = F(3)[1 + PT(t)], _N(t) = ~ a,2(t)2,, (11) 

with 2, defined in ( lb) ,  then we must  find sufficient condit ions on P?(0) such 
that  N(t) < oo for t e [0, oo]. 

We notice that ,  as in Ref. 3, a trivial general izat ion of  this s tudy could be 
done.  We could start  with eXF(x, 0), violating the momen t s  condit ions M o 
-= M 1 - 1, determine the corresponding a,(t) (n >~ - 2) solutions of  a system 
generalizing Eqs. (9a)-(9c), and obta in  the condi t ions on ~g(0) In />  - 2 in Eq. 
(11)] ensuring the boundedness  of  the cor responding  N(t) for  t :~ 0. 

In  the second approach  we consider the power  series given by ( lb)  and try 
to obta in  sufficient condit ions at t --- 0 ensuring both  the convergence of  the 
series at any t >~ 0 and the existence of  sums F(x, t) which are entire functions 
in the x plane for  all t t> 0. With  the modu lus  la,(t)l let us define 

No(t) = ~ 2,la, I (12a) 

Nq(t) = ~, ).,la,l(n + 2)(n + 1)- . '  (n + 3 - q), q >~ 1 

We get absolute upper  bounds  for the power  series ( lb) ,  

Ixl~ No(t ) (lZb) leXF(x, t) I < 1 + No(t) + ~ q[ F(q + 3) 
q = l  

Nq(t)[F(q + 3) ] -  1 is essentially an upper  bound  for the qth derivative with 
respect to x of  e*F(x, t) at x = 0. We want  to obta in  sufficient condit ions at t 
= 0 such that  the set {N0(t)} leads to entire x funct ions for  the lhs of  Eq. (lb).  
Let us assume,  for instance, that  we have found  condit ions on the set {Nq(0)} 
such that  No(t ) < q ! x (const)L where the cons tant  is t independent .  In such a 
case we have absolute convergence for  the sum ( lb)  [ the inversion of  the 
summat ion  in Eqs. ( la )  and ( lb)  is justified] and  the rhs of  Eq. ( t2b)  is less 
than  const  x exp(const]xl) for any t >~ 0 [using inequalities for  the F(q 
+ const)  funct ions] .  

Due  to the possibility of  different classes of  solutions (9b), (9c) 
[arbi trar iness on the set a,(0)],  the smallest n value for  which a,(t)  ~ 0 is not  
necessarily n = 0. It  can be any integer value n o [a,o(t ) ~ 0], n o = 0, 1, 2 ..... 
We shall find tha t  the bounds  on N, N o , N o depend explicitly on n o . The  study 
is done  in the Appendix.  
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3.1. Bounds on /V ( t )  = ~=.oa.Z(t)2. f r o m  Condi t ions  o n / q ( 0 )  

We start from Eq. (9b), notice that the first nonlinear contribution on the 
rhs appears for n = 2n o + 2, multiply by 2,a,(t), integrate from 0 to t, use both 
the Schwarz inequality and the inequality 

2. 2 (2n + 3)(2n + 5) 
2m2,-,,-2 ~<A(n)=15 ( n + l ) ( n + 2 )  ' 0 ~ < r n ~ < n - 2  (13) 

proved in Appendix A1, and finally sum over n to deduce, in Appendix A2, an 
integral inequality [see Eq. (A3)] which can be solved. If  

(oo+,?1- 
/9(0) ~< \no + 3)  [_,=2,o+2 (n + 3)2J (14) 

we obtain an explicit upper bound for PT(t) [see (A4)] such that N(t) ~< N(0) 
for t  e [0, ~ ] .  Thusi fn  o = 0, 1, 2 ..... we must have PT(0) < 0.82, 2.82, 5.46 ..... 
Further, if the inequality in Eq. (14) is strict, then l i m , ~  N(t) = 0. 

3.2. Bounds on No(t) = ~2~ 2,1a,(t)l f rom Condi t ions  on N ( 0 )  n = n o  

We start from Eq. (9c), multiply by 2,, take the modulus of both sides, 
bound the rhs by the sum of the modulus of the different terms, use both the 
Schwarz inequality and Eq. (13), sum over n, and deduce, in Appendix A3, an 
integral inequality [see Eq. (A6)] which can be solved. If  

no + 1 2no + 5 
No(0) ~< (15) 

n o + 3 A(2n o + 2) 

we obtain an explicit upper bound for No(t ) [see (A7)] such that No(t ) <~ No(0) 
for t~  [0, oo]. Thus if n o = 0, 1,2,..., we must have No(0) 
~< 2.38, 5.50, 8.89 ..... Further, if the inequality in Eq. (15) is strict, then 
lim,~o~ No(t ) -=- O. 

3.3. Bounds on Nq(t), q >~ 1 

We start with Eq. (9a), which we differentiate q - 1 times with respect to 
u, perform some algebraic manipulations, and obtain, in Appendix A4, a set 
of inequalities [see (A9)] 

Uq(t) < e-'[N~(0) + qUa_, (0)] + qUa_ 1 (t) 

fi[ 1 p / t + ~-' e" 2U~_,(t') + ~ C~_,U,(t)U~_,_~(t) (16) 
p=O 
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from which we can recursively obtain bounds on Nq(t) from the set {Np(0)},p 
~< q, and No(t ). We assume that the sufficient condition in Eq. (13) ensuring 
No(t) <~ No(0 ) is satisfied. 

The same set of inequalities (16) was also obtained and studied in Ref. 3, 
so that we quote the result which can be deduced from it: If No(t ) ~< No(0 ) and 
if 

INq(0) ~< q! No(0)[4 + No(0)]q- 1[No(0) + Z/q] for q >~ 1 

then from (16) it follows that 

Nq(t) <. q! No(0)[4 + N0(0)] q 

3.4. Results Concerning the Existence o f / V ( t )  in the Case of a 
Vio lat ion of Mass and Energy Conservat ion Laws 

We do not require Mo(t ) =_ M l ( t  ) = 1 ; define a_2(t) = Mo(t) and a_ l(t) 
= M 1 (t) - Mo(t),  and instead ofEq.  (9b) we have a new nonlinear differential 
system, (3) 

( 3 + n )  ~ a . ( t ) + a .  = amaq, n = - 2 , - 1 , 0 , 1 , 2  .... (9b') 
m + q = n -  2 

eXF is still given by a generalized Laguerre polynomials expansion, 

eXF(x, t) ~ ( - 1  " r = ) L .+z(x)a . ( t )  
n =  - -2  

and for the existence of the solution in the Hilbert space we must investigate 

f wr2e2X dx : r(~)_g(t), ~ ( t ) :  ~ a.2(t))~ n (11') 
n =  - 2  

The study is done in Appendix A5. It is shown that .N(t) is bounded for t > 0 
(or even t ~  or) if either bT(0) ~< 6~ -2 or ~.~=-2 2.1/2[a.(0)1 ~< 1. 

4. C O N S T R U C T I O N  OF THE SOLUTIONS 
OF THE K R O O K - W U  M O D E L  

We consider initial value conditions at t = 0 on the set {a.(0)} such that 
F(x, 0) > 0. If  the number ofa.(0) ~ 0 is finite, we easily control the positivity 

a.(0)L. + 2 (x); however, the problem becomes difficult when of the sum 1 + ~ (1/2) 
the set {a.(0)} has an infinite number of elements. Fortunately we can take 
great advantage of the generating functional of the Laguerre polynomials and 
by differentiation, integration, linear combination ..... obtain a large class of 
{a.(0)) such that the sum (la) can be written in closed form and the positivity 
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of  F(x, 0) easily established. The determinat ion of  the {a,(t)} being the same 
for either the K r o o k - W u  or the T j o n - W u  model,  we sketch also some results 
of  Ref. 3. 

4.1. The Fundamental  Solutions Where  Only 
ap_l(0) ~ 0, p Integer />  1 

We recall (3) that  the only a,(t) ~ 0 are for  n = P - 1 + k(P + 1), k 
= 0, 1, 2,.... We define 2(k) = (k + 1)(P + 1) and a,= -2+;.(k)(t) = ck(t), and 
substituting into (9c), we get 

c o ( 0  = a p _ l  e xp  - 

1 ( 2 ( k ) - l )  
ck(t) - 1 + 2(k) exp 2(k) + 1 t 

x e x p t 2 ~  1 t' m+m'=k-12 cm(t')cm,(t') dt' 

and the ck(t ) can be obtained recursively f rom Co(t ). The Laguerre expansion 
( la)  becomes 

eXF(x, t) = 1 + ~ Ck(t)(-- ~jl~X(k)t(li2)~X(k) t~, 
k 

e~F(x, O) = 1 + ap_ 1(0)(--  x)|]P 1 ir (l/2)("']~p+lt~] 

2.5 I 7 I I ~ / 

; x . . . .  (1/2). , /// 
2.0 k \  e I-tx,0J = 1.~-L 2 Ix1 / /  

\ / 
\\ ___,.o // 

, ~ -  ' , , \  . . . . . .  t - - 1  l,' .... 
.,.. ',,\ ............ I ............. 
"-,.. \~, - -  t - c o  17 ......... " 

,.~ " " :k  . . . . . . . . . . . .  ,,<'t"" 

I ~ .................................. #l//llll 
o.5~- X"-. , J ~  

.... 

OI I t ~ l  I I 
0 1 2 3 ~ 5 

Fig. 1 
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I I - i - I  t I ~  i - -  

Flx ,o)e  x = I- 02L~/2)lx) 

1.5 / , , / -  

1 ' , ,  ,~ L . . . . . . . . . . . . .  v . . . ._z . . .  . . . . . . . . . . . . . . . . . .  z . . . . . . . . . . . . . . . .  

. . . . .  t _ - ,  . . . . . . . . . . .  / 

[ ............. t - - S  ~ t 
i t = c x ~  I 

I I _ ~ _ _  I I . _ _ _  I I 
0 1 2 3 & 5 6 7 

Fig .  2 

and so whereas at t = 0 we have only o n e  LI,1/2)(x), as soon as t becomes 
positive, we have an infinite number of  LI,I/z)(x). AS illustration we consider 
two simple examples. 

In Figs. I and 2 we plot the ratios if(x, t) = F(x, t)/F(x, oo) corresponding 
to the initial conditions eXF(x, O) = 1 + 4L(zl/2)(x ) and 1 - 0 . 2 L t 3 1 / 2 ) ( x ) .  The 
results are similar to those of  the T jon-Wu modelJ 3) In Fig. 1 we see a small x 
interval (near the second zero of ff - 1) for not too large t values where F(x, t) 
is slightly larger than if(x, 0) or if(x, oo). 

4.2, Inf in i te  Mix ing  of  the Fundamental  Solutions 

Where the set {a,(0)} has an infinite number of  elements. We start with 
the generating functional of  the generalized Laguerre polynomials 

o o  

1 + ~ z"Lt,1/2~(x) = (1 -- z) 3/2 exp xz 
1 z - -  1 '  Izl < 1 ( 1 7 )  

Our aim is to deduce from Eq. (17) simple examples ofeXF(x, 0) in closed form 
in such a way that the positivity of  the sum of the Laguerre polynomials is 
easily established. We must have the coefficients of L(ol/Z)(x) and L]l/2)(x) 
respectively equal to one and zero in order to satisfy M o -= M 1 - 1. 

(i) We consider a linear combination of Eq. (17) and of its first derivative 
with respect to z: 

eXF(x, O) = 1 + ~. zmL~/Z)(x)(1 - m) 
2 

1 ( 
( l - z )  5/2 1 ~ - +  e X p z _ l ,  O < z <  1 (18) 
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For this example a,(0) = ( - 1)" + 1 (n + 1)z" + 2 ; if  we substitute into Eq. (9c) we 
find 

a,(t) = ( -  1)"+l(ze-t/6)"+2(n + i)  

and it follows that eXF(x, t) is obtained from Eq. (18) by the substitution z 
ze-t/6. This example corresponds to the particular K ro o k -W u  solution m 

or equivalently to the Bobylev ~5) one, which was also written with a Laguerre 
expansion. 

(ii) We can obtain a more general family by linear combinations of  Eq. 
(17) with higher order derivatives and obtain for the sums exponentials 
multiplied by polynomials of  arbitrary order in x. Let us first notice that any z 
derivative of  Eq. (17) has a sum written down in terms of Laguerre 
polynomials of  argument x/(1 - z): 

xz  \ f  z ~q ~112,[ x \ 

n i \ 1  \ 1  

We add easily an arbitrary number of such terms : 

e~F(x, O) = L ~ n l / Z ) ( x ) z  n C, p 
n = O  ' , , p  = 0 / 

34exo xz t .9t 
" \ - z - a J  " \ l - z J  " \ l - z J  p = O  

where d o = 1, d 1 = - 1 ,  and the other dp are arbitrary. If  the {a,(0)} 
corresponding to the lhs of Eq. (19) are given as input into Eq. (9c), then by 
calculating the a,(t) and substituting into (la) we build a family of  solutions 
where the initial conditions correspond to exponentials multiplied by 
arbitrary polynomials of  arbitrary order q. Of  course other families of 
solutions can be deduced from Eq. (17). 

1.5 

1.0 

I I I I I I - -  

~...~.,...., . . . . .  

ii _ :o " % , _  . ............................ 
/ .............. ,=s ~ ' - - . . . .  

i F _ 1 i i 
1 2 3 4 5 6 

Fig. 3 
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1 5 ~  t i L f i I "~ eXF(x,o) = l ~ 'X (  1+ ~-~ -3 ) 

o l  I I I I I ! 
0 1 2 3 ~ 5 6 

Fig. 4 

(iii) Another simple family can be obtained from linear combination of 
E q .  (17) f o r  d i f f e r e n t  z v a l u e s ,  

n - 2  

1 - zlz2 ~ L~/2~(x) Z zl~z~ p-2 
2 p=O 

[ Z2 exp XZl zl XZ2 1 
--- (z2 - Z l ) - 1  (1 - Z l )  31z Zx - 1 (1 _ z2)3/2 e x p  z2 - 1 (20) 

1.5 

1 ~ . . . . . . . . . . . . . . . .  t=oo 

0.5 

- , . . . . .  
. , , . .  

-0.5 

-t.5 

Fig.  5 
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In these examples  Eqs. (19)-(20) represent  eXF(x, 0), so that  the arbi t rary  
pa ramete r s  z, d v,... or z l ,  z z are restricted in such a way that  the rhs of  these 
equat ions represent  positive functions for  x / >  0, a l though there also exist 
examples  violating posit ivi ty at t = 0 and not  for t > to > 0. 

In Fig. 3 we plot  i f (x,  t) corresponding  to z -- �89 d2 = 415, dp = 0 f o r p  > 2 
in Eq. (19), and in Fig. 4, z = �89 d 2 • 4, da _ 8 - - ~ ,  d v = 0 f o r p  > 3. In both  
cases near  the largest f f -  1 zero we r emark  the same small effect as the one 
discussed previously in Fig. 1. In Fig. 5 we plot  Eq. (20), zl - 5 , -  2 2 2  = 3, having 
at t = 0 a negative par t  which disappears  for 1 < t o < 2 and higher t values. 

5. C O N C L U S I O N  

In this paper  (6) we have studied the solutions of  the K r o o k - W u  ~ model  
and found that  their features are very similar to those of  the Tjon-WuC2) one 
studied in Ref. 3, the only difference being that  the expansions are with 
Laguerre  polynomials  L(, 1/2) instead of  L (~ Since in bo th  models  the time 
dependence is provided by the same set a,(t) ,  it follows that  the comments  
concerning the K r o o k - W u  conjecture (1) [general  s tructure suggested by the 
par t icular  K r o o k - W u  solution (18) of  the present  paper ]  are the same in both  
cases. I f  M 2 and M 3 do not  satisfy very par t icular  relations,  then the slowest 
dependences of  the a,(t)  are e x p ( - t / 3 )  and e x p ( - t / 2 )  and these t ime 
dependences are already present  (in a given combina t ion)  in the part icular  
K r o o k - W u  solution. 

Finally we notice two possible extensions o f  our  work,  giving up the 
present  assumpt ions  o f i so t rop ic  collisions and a spatially homogeneous  gas ; 
this has a l ready been done for the K r o o k - W u  or Bobylev part icular  
solution.(1,5,7) 

A P P E N D I X  A 

A1.  Bound  o n  ,~n/,~m,~n_m_2, m ~ [0, n -- 2], n ~> 2. 

2, = (2n + 5)!!/2"+2(n + 2)! 

so that  

2ff2,,2,_, ,_z = (2n + 5)!!/[(n + 2)!/~m] 

with 

tim = (2m + 5)!! [2(n - m) + 1]!! = f l~- , , -z  
(m + 2)! (n - m)! 

m ~ [0, n - 2], n and m integers, 

We recall 

n > 2  
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However, for n fixed and p < (n - 3)/2, fl.P is increasing: 

]~p /~p+~ (2p + 5)!! [-2(n - p )  - 13!! 
- = (2p + 3 - n )  

(p + 3)! (n - p ) !  

It follows that ~n m ~ ~n 0 and finally 

2. 2. (2n + 3)(2n + 5) 2 
~< - A ( n )  = ( A 1 )  

2m2.-,. 2 202.-2 (n + 2)(n + 1) 15 

and we remark that A(n) is a decreasing function of n. 

A2. Boundon AT(t) = 52 . . . .  a.Z(t)2. �9 We multiply Eq. (9b) by 2.a., put 
7. = (n + 1)/(n + 3), and integrate from 0 to t: 

a.Z(t)2. = [exp(-27.t)]a.2(0)2. ,  n ~< 2n o + 1 

{ a.2(t)2. = [ e x p ( - 2 7 / ) ]  a.2(0)2. + n ~  [exp(27"t')]a"(t')2~/2 (12) 

)~l/2am(t')ap(t') dt't, n >~ 2(no + 1) • 

m+p=n-2  J 

From the Schwarz inequality and (A1) we obtain 

p~= )l/2amap ~ A1/2(n ) ~ 1/2 1/2 I).m a,.ll2p apl < A1/2(n)2V 
m +  n - 2  

We remark that e x p ( -  70 Sto (exp 7t')lf(t')[ dt' is a decreasing function of 7 and 
from (12) we get 

a.2(t)2. ~< [exp(-27.ot)]a.2(0)2. 

a.2(t)2. < [exp(-2Y~ot)] a~2(0)2. + ~ 11/2(n) 

f } t - 1 / 2  ~ r x [exp(27.ot )]la.(t ).t. IN(t ) dt' 
0 

Summing over n and using the Schwarz inequality for 52 [a.[A1/Z(n + 3)- 12., 
we get a nonlinear integral inequality: 

exp(27.ot) ~< 5,I(t) = N(0) + 2C.o [ i  [exp(27t'~~ ~7(t) dt' 
,dO 

(A3) ~X3 A(n) 
c . \  = 2 

.=2.0+2 (n + 3) 2 
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We remark that 

dM 
~'1-3/2 = 2Cno[eXp(27.ot)]~3/2ffi 3/2 ~< 2C.o exp(_?not) 

dt 

Integrating both sides, we get 

~-1/2(t)> ~?-1/2(0) % % 
- - -  + - -  e x p ( -  7.~ 

7.0 7.0 

If 2V1/2(0) < 7no/C.o, we can substitute into the rhs of (A3) and finally we find 

(Tn~176 (A4) 
_g(t) ~< {~(0)1/2 + [7.o/C.o _ _~(0)1/2 ] exp(y.ot)}2 

if 
N(0) ~< (Y"~ ( no + 1 ~ 2 [ Z  ~ (2n + 3)(2n + 5) ~-1 

\ % /  \no + 3) L15 .=2,,o+z (n + i~n +~(~+-3)2j  

A3. Bounds on No(t ) = F, ]a.(t)12.. We start from Eq. (9c), multiply by 
2., take the modulus of both sides, and bound the rhs, 

I;t.a.(t)l = 12.a.(0)l exp(-7 . t ) ,  n ~< 2n o + 1 

fo la.(t)2.1 ~< [exp(-7 . t ) ]  la.(0)2.1 + (n + 3) -1 exp(Tnt') 

x y. 12,.a~,)ll2pap(t,)l 2. dt-] n >~ 2(n o + 1) 
re+p=.-2 2.2p J '  

(AS) 

We obtain upper bounds on the rhs by the substitution y. ~ 7.0, 2./2,.2p 
-+ A(n), A(n)/(n + 3)-* (2n o + 5)-lA(2no + 2): 

[2.a.[ ~< J2fl.(0)[ exp(-7.ot  ) 
I A(2n o + 2) 

[2.a.] ~< [exp(-V.ot)] [a.(0)2.[ + 2n o + 5 

x f l  exp(7"~ ~ I2,.a..ll2papl dt'] 

Summing over n, we get a nonlinear integral inequality: 

A(2n o + 2) I t 
N~ exp(7"~ ~< M~ = N~ + 2n o + 5 3o NoZ(t ') exp(y.ot' )dt '  (A6) 

We note that 

d M o l ( t ) =  (2no + 5)_lA(2no + 2)Mo2[exp(7.ot)]No 2 
dt 

< (2n o + 5)-1A(2no + 2)exp(-Y.ot ) 
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Integrat ing bo th  sides, we get 

No(O)[Mo(t)] -1 > [1 - No(0)A(2n o + 2)[),.o(2n o + 5)J 1 

+ No(O)[Tno(2n o + 5)]-1A(2no + 2 ) e x p ( - y . o t ) ]  

if 
No(0) < ?.o(2no + 5)[A(2no + 2)] -1 

We can substi tute into the rhs of  (A6) and obtain  

No(O)7.o(2no + 5)[A(2n o + 2)] 
No(t) < 

No(0) + [7.o(2no + 5)/A(2no + 2) - No(0)] exp(?.ot) 
if 

(A7) 

?,o(2n o + 5) 15 no + 1 (2n o + 3)(2n o + 4)(2n o + 5) 
No(0) ~< 

A(2n o + 2) 2 no + 3 (4no + 7)(4no + 9) 

A4. Bounds on Nq(t) = ~,o 2,]a,[(n + 2)(n + l ) ' - ' ( n + 3 - q ) ,  q~> 1. 
We start  with Eq. (9a), which we differentiate q - 1 times with respect to u. 
Equat ing  to zero the coefficients o f  u "+ 3 - q  we get a nonl inear  system like 
Eq. (9b) (where the nonlinear  par t  appears  for  n >~ 2n o + 2), which we 
integrate f rom 0 to t [like Eq. (9c)] 

(n + 2) . - - (n  + 3 - q)[a,(t)] 

= (n + 2)"'" (n + 4 - q)[(n + 3 - q)a,(O) + qa,(O)]e ' 

- q(n + 2)'-" (n + 4 - q)a,(t) 

; [  + e - t  dt' e c 2(n + 2). . .  (n + 4 - q)a,(t') 

q--1 

+ ~ c,~_~ F~ ~m(C)(m + 2)". (m + 3 --p)a',(r 
p=O m + m ' = n  2 

• ( m ' + 2 ) . . - ( m ' + 3 - q + l  + p ) J  (AS) 

with (m + 2) --' (m + 3 - p)  --- 1 i fp  -- 0. In (A8) the nonl inear  par t  (last term 
on the rhs) appears  for  n t> 2n o + 2. 

We take the modulus  of  bo th  sides, bound  the rhs by the modulus  of  the 
different terms,  mult iply by 2. ,  bound  2./2.,2. _. ,_ :  by A(2n o + 2), sum over  n, 
and find 

Nq(t) < e - ' [Nq(0)  + qNq_ 1(0) ] + qNq_,( t )  

for + e - '  e c 2Nq_a(t') + A(2no + 2) 

q--1 1 p t x ~, Cq_lNp( t  )Nq_ l_p(t ')  at' (A9) 
p=O 
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We could use (A9) in order to get bounds on Nq(t). However, we remark that 
A(2no + 2) < 1, and substituting this value in the rhs of  (A9), we get the same 
inequalities as in Ref. 3. 

A5. Bounds on 37(0 = ~ - 2  a,Z(t)2, - In Eq. (9b') let us put n + 2 = p  
and @(t) = ap_ z(t); we obtain 

dbp 
dt + bp = (p + 1) -~ ~. b,.bq, 37(0 = bp2(t)2p (AIO) 

m + q = p  0 

where 2v = 2p-2 = (2p + 1)!! 2-P(p!) -1. First we want to prove 

2p/2,,2p_ m ~< 1 for m integer ~ [0,p]  (Al l )  

We notice that 2p/2m2p-m = 1 for m = 0 o r p ;  equals (2p + 1)/3p ~< l for m 
= 1  or p - - l ;  and equals A ( p - 2 ) <  1 for m e [ 2 , p - 2 ] .  Second, we 
multiply (A10) by -~pbp, integrate from 0 to t, and sum over p : 

37(t)e 2' 37(0) + e2C ~ hi2 = bp2p (p + 1 ) - '  ~ bmbp_m~.p/2 dt' (A12) 
p m = 0  

Using (A.11) and the Schwarz inequality, we get 

o._.z._~) ~< 37(0 
IZ bp~ppl2(p + 1)-'1 ~< r37(t)~]1/2[E (P + 1)-2]  1/2 

and finally 

;o 37(t)e e' <~ 37(0) + 2 z ~ 6  eeC373/2(t ') dt' (A13) 

This integral inequality was also considered and solved in Ref. 3: 

37(t) ~< 37(0){[1 - (~A/6)37'/~(0)]~' + (~&56)37~/~(0)} -~ 

if 37(0) ~< 6z -2 (A14) 

Third we multiply (A10) by ~/2,  integrate from 0 to t, sum overp,  and define 
M(t) = ~, (Zv)ll21bp(t)l; we get 

M(t)e ~ ~< M(0) + ~ e"F,  [b,.I Ibp_ m12~/2 dt' 

Still using (AI 1), we finally get 

M(t)g  <~ M(O) + eCM2(t ') dt' 

which is also an integral inequality solved in Ref. 3: 

M(t) <. M(0){[1 - M(0)]e ~ + M(0)}-I  if M(0) ~< 1 
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Noticing that N(t) ~< M2(t), we conclude that N(t) < co if either N(0) ~< 67z- 2 
or m(0) ~ 1. 
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