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On the Krook—Wu Model of the Boltzmann Equation

H. Cornille!
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The distribution function of the Krook—Wu model of the nonlinear Boltzmann
equation (elastic differential cross sections inversely proportional to the relative
speed of the colliding particles) is obtained as a generalized Laguerre polynomial
expansion where the only time dependence is provided by the coefficients. In a
recent paper M. Barnsley and the present author have shown that these coefficients
are recursively determined from the resolution of a nonlinear differential system.
Here we explicitly show how to construct the solutions of the Krook—~Wu model
and study the properties of the corresponding Krook—Wu distribution functions.
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1. INTRODUCTION

Recently Krook and Wu have provided a model of the nonlinear
Boltzmann equation of a spatially homogeneous and isotropic gas where the
elastic cross section of the binary elastic collisions is inversely proportional to
the relative speed. Tjon and Wu'® made the further assumption that the
generating functional of the Boltzmann normalized moments M, (¢) is the
Laplace transform of a new distribution function which also represents a
model of the Boltzmann equation. In very recent papers Barnsley and
Cornille® showed that the Tjon—Wu distribution function can be expanded in
a series of standard Laguerre polynomials L, ,(x) (x = v*/2, v being the
velocity) in such a way that the only time dependence is provided by the
coefficients a,(z). Further it was shown‘® that these a,(¢), which are linear
combinations of the M, (¢), can be recursively obtained from the resolution of
a nonlinear differential system.

In this paper we study directly the Krook—Wu distribution function
f(v, t) without the assumption shared by the Tjon—-Wu model. If we define

(2n)32f(w, t) = F(x = v?/2, 1)
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we show that F has an expansion in generalized Laguerre polynomials
L/ (x) with the same coefficients a,(t) as in the previous Tjon-Wu model

(—1)'a,(e)L{H3 (x) (1)

M8

Fix,t)e =1+

n=0

H

It follows that we can use the results of the previous analysis® for the a,(¢) and
replace L,(x) by L{"/?(x) for the study of the solutions of the Krook-Wu
model. In Section 2 we recall the formalism and establish the expansion (1). In
Section 3 we give some sufficient conditions for the existence of F(x, t) from
initial conditions at ¢=0. Taking great advantage of the generating
functional of the Laguerre polynomials L{'/”(x) [in order to start with
positive distribution functions F(x, 0) at ¢+ = 0], we study in Section 4 some
classes of solutions F(x, t).

2. THE FORMALISM AND THE GENERALIZED
LAGUERRE EXPANSION OF F(x.t)

We start with the generating functional G of the normalized moments
M, (1) corresponding to the Krook-Wu? distribution function f(v, 1):

4n2'n! [ .
M, (1) = Cnt ) L flo, "2 dv 2)
G, 1) =), &M, (1) 3)
fcan be written as a transform of G
) 0 22nn! évz n
G, t)=4n L v*f (v, I)[ZO: ol (7) j}dv 4)

which does not appear very simple to invert. By a change of variable
Q@nr)¥*f(v, 1) = F(x = v*/2,1)
and using the identity
22 g2 + I =TEHI 0 +3)]7!

we can rewrite Egs. (2), (3):

M,(1)=[T(n+3]"" r X" UV2F(x, 1) dx )
0

oo xm+1/2€m ,

G(é,t)zjo F(x,[)%:r(rn—_’_—%‘s X (4)

In the following we always consider F. The M, (r) must satisfy well-defined
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constraints: conservation of mass and energy, and the requirement of a
Maxwellian distribution at equilibrium,

My)=M,(1)=1, lim M,@t)=1 (5)

t—=
As in Ref. 3, let us introduce new functions a,(¢) associated with M, (¢):

n+2

a(t)= Y (=1YCl M,z ,(0) (6)

q=0

where C,? are the usual binomial coefficients and G can be rewritten [taking
into account Eq. (5)]

e o}

G(, t)—% Z LD =& ()

From the definition of the I" function it is easy to see that the inverse transform
of the first term of Eq. (3) is just e *:

1 o] xn+ 1/25»1
— n o -Xx oz 1
I L T lTarap® <
This suggests the form

F=e ™+ Z ln+2(x)an(l)

where the /, have to be determined and must satisfy

5n+2 m+1/2£m

T s j hoat) oy =G <!
Finally our problem for /, is reduced to finding the inverse Mellin transform
o I'(m + 3/2)
for integer m values. We obtain®
J"O - L3 (x)xm+1/2 _ {Cm”(— 1y f n<m
o I'im+ 3/2) 0 if n>m
so that F has an expansion with generalized Laguerre polynomials

eFx, )=1+ } (—1)L¥F(x)a,(t)

n=0

Lg =1 (12)

p-1 3 5y ... 4
LyP(x)= ¥ (—x)" (m + 2)(’"”'; Z(L (m)' 3 + z) ( pT)
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In (1a) the coefficient of L{/? is 1, due to the constraint M, = 1, and the
coefficient of L{!/? is zero, due to My(t) = M, () = 1. From the explicit
expression of the L{/#(x) in powers of x we can rewrite e*F(x, 1) as a power
series (assuming that we can invert the order of summations)

—x)

)(2)(2) (g +7)

e“F(x,t) =1+ Hy(t) Z
t) - Z (—1 an([)ln

H (1) =%2 (—1)a,@)n+2)n+1)-m+3—g9q)

H,(1)

(1b)

Aa=Qn+ 527" (n+2)7*

which can be justified only after a study of the properties of the {a,} or of the
{H,}. Sufficient conditions for absolute convergence and ¢ € [0, oo] will be
established in the next section.

From Eq. (1) we see that the nontrivial dependence of the Krook-Wu
distribution functions is entirely provided by set {,(z)} and we recall briefly
the method given in Ref. 3 in order to construct these {a,(¢)} from initial values
{a,(0)}. Krook and Wu'") have established that G satisfies a nonlinear partial
differential equation (nl pde)

o g EG
<6m 56)( )= @)

Let us define a new variable u such that (1 + u~*) = 1, and a new generating
functional H(u, t) of the moments M (¢) or a,(z)

0

Hw, =1+ (1 -OGE N=Y auw"’ @®)

n=0

Due to Eq. (7), H also satisfies a nl pde, which can be written for the expansion

@®)
7 u2+n[(3 + n)%an(l) +(n+ l)a,,(t)} = [Z un+2an(t):|2 (%a)

n+2

Equating to zero the coefficients of u" " 2, we get a nonlinear differential system

for the a,

G+ n)%an(t) ++ D)= Y a,a) (Ob)

m+p=n—2
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which can be solved recursively

ao(t) = ao(0) exp(—=1/3),  a;(1) = a,(0) exp(—1/2)

n+1 ! n+1
a,(t) = exp(—n 3 t>|:an(0) + f exp(n 3 t’>
0

x Y auta,)n +3)7 dt} (9c)

m+p=n—2

The set of values {a,(0)} correspond to arbitrary integration constants and
lead to the different possible solutions {a,(r)}. It was shown that a,(f)
decreases at least like exp{—[(n+ 1)/(n+3))¢} and consequently
lim, , , a,(t) = 0. It follows from (la) that at fixed x, lim, ., F(x, 1} =e ",
which represents a Maxwellian behavior. Finally we recall that the {M,(¢)}
can be reconstructed from the a,(7)

n—2

Mn(t) = I + Z quan*Z‘q(l)’ h

q=0

WV
[\

(10)

3. EXISTENCE OF THE DISTRIBUTION FUNCTION e*F(x,t)
EXPRESSED EITHER WITH THE POWER SERIES (1b) OR
WITH THE GENERALIZED LAGUERRE SERIES (1a)

Asin Ref. 3 for the Tjon—Wu model, we can, for the study of the existence
of the Krook—-Wu distribution function, consider two different approaches.
The methods for the two models being essentially the same, with the only
technical change that the L{® must be replaced by the L{/®, we sketch very
briefly the salient results.

In the first approach, taking into account the orthogonal properties of
the generalized Laguerre polynomials (with well-defined weight functions), we
construct a Hilbert space of functions expanded as in (1a) in the Laguerre
polynomial basis and try to find sufficient conditions in order that the solution
stays in the space at later time if it is present at ¢ = 0. We have to define an
inner product and the key property is to find that the solutions are square-
integrable in a well-defined way. Let us call # the Hilbert space of real-valued
functions 0 < x < oo defined by the symmetric inner product

(f,g)=f Sgxwix)dx,  f.geH

where w(x) = e~ *x'/2 is the weight function of the generalized L{'/* Laguerre

polynomials. Taking into account the orthogonal property

f w(x)Ly P (X)L (x) dx = 6,,1(p + 3)/p!

0
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we could introduce a complete orthonormal basis for # with the functions
LYY (x)[C(m + $)/m!] ™ /. We assume that F(x, 0)e* € # can be expanded in
this basis. Further, we assume that the moments M, = M, = 1 are satisfied. It
follows that F(x,0)e* has an expression like (la) with no component
corresponding to L{?. We define F(x, t)e*, where the components at 7 % 0 are
given by the solutions (9¢) of the system (9b), and which is expanded in the
same basis (1a). We want to find conditions at = 0 such that the norm of Fe*
at 7 # 0 remains finite. If we define

va w(x)F2(x, t)e** dx = T(3)[1 + N(1)], N@ty=Y a1, (11)
0

with /1, defined in (1b), then we must find sufficient conditions on N(0) such
that N(r) < oo for t € [0, o ].

We notice that, as in Ref. 3, a trivial generalization of this study could be
done. We could start with e*F(x, 0), violating the moments conditions M,
= M, = 1, determine the corresponding a,(7) (n = — 2) solutions of a system
generalizing Egs. (9a)-(9¢), and obtain the conditions on N(0) [n > ~2in Eq.
(11)] ensuring the boundedness of the corresponding N(¢) for 7 # 0.

In the second approach we consider the power series given by (1b) and try
to obtain sufficient conditions at ¢ = 0 ensuring both the convergence of the
series at any ¢ = 0 and the existence of sums F(x, /) which are entire functions
in the x plane for all + = 0. With the modulus |a,(z)| let us define

Ny(t) =) Aa,
o(t) Z |a,| (12a)
N() =) Zajn+2)n+ 1)~ (n+3~q), g>1
We get absolute upper bounds for the power series (1b),

e F(x, 0] < 1+ No(t) + ¥ qu’;':r (+) V(0 (12b)

NI (g +3)]7" is essentially an upper bound for the gth derivative with
respect to x of e*F(x, t) at x = 0. We want to obtain sufficient conditions at ¢
= 0 such that the set {N,(r)} leads to entire x functions for the lhs of Eq. (1b).
Let us assume, for instance, that we have found conditions on the set {N,(0)}
such that N () < g! x (const)?, where the constant is z independent. In such a
case we have absolute convergence for the sum (1b) [the inversion of the
summation in Eqgs. (1a) and (1b) is justified] and the rhs of Eq. (12b) is less
than const x exp{const|x|) for any ¢ > 0 [using inequalities for the I'(g
+ const) functions].

Due to the possibility of different classes of solutions (9b), (9¢)
[arbitrariness on the set ,(0)], the smallest n value for which a,(z) # 0 is not
necessarily n = 0. It can be any ir~1teger value ny [a, () #0],n,=0,1,2,....
We shall find that the bounds on N, Ny, N, depend explicitly on n,. The study
is done in the Appendix.
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3.1. Bounds on N(t) = £*,_a,(t)i, from Conditions on N(0)

n=ngp

We start from Eq. (9b), notice that the first nonlinear contribution on the
rhs appears for n = 2n, + 2, multiply by 4,a,(t), integrate from 0 to ¢, use both
the Schwarz inequality and the inequality

A, 2 2n+3)2n+5)
Ay =T g<mgn—2 (13
L S = e T 2) msn (13)

proved in Appendix Al, and finally sum over n to deduce, in Appendix A2, an
integral inequality [see Eq. (A3)] which can be solved. If

N ng+ 1\ & An) 1!
MO < ( T 3) [Z o 3)2] (14

we obtain an explicit upper bound for N(¢) [see (A4)] such that N(¢) < N(0)
fort e [0, co]. Thusifn, =0, 1, 2,..., we must have N(0) < 0.82,2.82, 5.46,....
Further, if the inequality in Eq. (14) is strict, then lim,_, , N(¢) = 0.

3.2. Bounds on Ny(t) = L, 4 la.(t)| from Conditions on N/(0)

We start from Eq. (9¢), multiply by 4,, take the modulus of both sides,
bound the rhs by the sum of the modulus of the different terms, use both the
Schwarz inequality and Eq. (13), sum over n, and deduce, in Appendix A3, an
ntegral inequality [see Eq. (A6)] which can be solved. If

no+1 2n,+5

No(0) <
o) ne + 3 AQng + 2)

(15)

we obtain an explicit upper bound for N,(z) [see (A7)] such that N,(¢) < Ny(0)
for te[0,0]. Thus if n,=0,1,2,.., we must have Ny(0)
< 2.38,5.50, 8.89,.... Further, if the inequality in Eq. (15) is strict, then
lim, ., ,, Ny(t) =0.

3.3. Bounds on N (t), g > 1

We start with Eq. (9a), which we differentiate ¢ — 1 times with respect to
u, perform some algebraic manipulations, and obtain, in Appendix A4, a set
of inequalities [see (A9)]

Nq(t) < eAt[Nq(O) + qu—l(O)] + qu—l(t)

t g—1
+ e-‘J e"[2Nq_1(t’) + cg_lN,,(z')er,p(z')] (16)
=0

0 14
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from which we can recursively obtain bounds on N,(t) from the set {N,(0)}, p
< ¢, and N,(¢). We assume that the sufficient condition in Eq. (13) ensuring
No(t) < Ny(0) is satisfied.

The same set of inequalities (16) was also obtained and studied in Ref. 3,
so that we quote the result which can be deduced fromit: If Ny(r) < N,(0)and
if

IN,(0) < g! No(O)[4 + No(0)]1™ '[No(0) + 2/g]  forg>1
then from (16) it follows that
N(1) < q! No(O)[4 + No(0)]°

3.4. Results Concerning the Existence of N(t) in the Case of a
Violation of Mass and Energy Conservation Laws
We do not require My(t}) = M, (r) = 1;definea_,(t) = My(t)and a_, (1)
= M ,(t) — M,(?),and instead of Eq. (9b) we have a new nonlinear differential
system,?

o0

d
(3+n)<Ean(t)+a,,>= Y g, n=-2,-1,0,1,2,.. (©b)

m+g=n—2

e*F is still given by a generalized Laguerre polynomials expansion,

CFx )= Y (— 1LY 0a)

n=-—2
and for the existence of the solution in the Hilbert space we must investigate

0

Y a0, (1)

n=—2

Jszezx dx =TE)N(1), N(t) =

The study is done in Appendix AS. It is shown that N(¢) is bounded for ¢ > 0
(or even ¢ — oo) if either N(0) < 6n7 2 or ¥ _, 11?a,(0) < 1.

4. CONSTRUCTION OF THE SOLUTIONS
OF THE KROOK-WU MODEL

We consider initial value conditions at 7 = 0 on the set {a,(0)} such that
F(x, 0) > 0.If the number of a,(0) # 0is finite, we easily control the positivity
of the sum 1 + ¥ a,(0)L{Y/%(x); however, the problem becomes difficult when
the set {a,(0)} has an infinite number of elements. Fortunately we can take
great advantage of the generating functional of the Laguerre polynomials and
by differentiation, integration, linear combination,..., obtain a large class of
{a,(0)} such that the sum (1a) can be written in closed form and the positivity
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of F(x, 0) easily established. The determination of the {a,(¢)} being the same
for either the Krook-Wu or the Tjon—Wu model, we sketch also some results
of Ref. 3.

4.1. The Fundamental Solutions Where Only
a, (0) #0, p Integer > 1

We recall®® that the only a,(t)# 0 are for n=P — 1 + k(P + 1), k
=0,1,2,... We define A(k) = (k + 1)}(P + 1) and a,_ _, . ,(t) = ¢,(¢), and
substituting into (9¢), we get

?
colt)=a,-, exp<—tp—+—§>

~ k-1
“0=1 T eXp< A+ 1 [>

' Ak)—1 | , N
X J; exp(:l(k—)d’_*1 ! ) m+m'Z:k‘1 e, (t)e, (') dt

and the ¢,(7) can be obtained recursively from c,(¢). The Laguerre expansion
(1a) becomes

eFlx,)=1+ Zk: c(0)(— 1P LY (x)

eF(x,00=1+a, ,(0)(—1)" ' LF(x)
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F(x,0)e*= 1- D.ZLS/Z)(X)
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and so whereas at t = 0 we have only one L{?(x), as soon as ¢ becomes
positive, we have an infinite number of L{!/?(x). As illustration we consider
two simple examples.

In Figs. 1 and 2 we plot the ratios F(x, t) = F(x, t)/F(x, o) corresponding
to the initial conditions e*F(x, 0) = 1 + £L{/¥(x) and 1 — 0.2LY/?(x). The
results are similar to those of the Tjon—-Wu model.® In Fig. 1 we see a small x
interval (near the second zero of F — 1) for not too large ¢ values where F(x, 1)
is slightly larger than F(x, 0) or F(x, o).

4.2. Infinite Mixing of the Fundamental Solutions

Where the set {a,(0)} has an infinite number of elements. We start with
the generating functional of the generalized Laguerre polynomials

7 —

1+ 2L (x) = (1 — 2)~ 32 exp le . <t (17)
1

Our aim is to deduce from Eq. (17) simple examples of ¢*F(x, 0) in closed form
in such a way that the positivity of the sum of the Laguerre polynomials is
easily established. We must have the coefficients of L{/?(x) and L{/?(x)
respectively equal to one and zero in order to satisfy M, = M, = 1.

(i) We consider a linear combination of Eq. (17) and of its first derivative
with respect to z:

eF(x,0)=1+) z"LOP(x)(1 — m)
2

1 5z Xz xz
=m(1—7+1_2>exp2~1, 0<z<1 (18)
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For thisexample a,(0) = (—1)""1(n + 1)z"*2;if we substitute into Eq. (9¢) we
find

a,(t) = (=10 {ze™ ") 2 (n + 1)

and it follows that e*F(x, t) is obtained from Eq. (18) by the substitution z
— ze” "% This example corresponds to the particular Krook-Wu solution®
or equivalently to the Bobylev® one, which was also written with a Laguerre
expansion.

(i1)) We can obtain a more general family by linear combinations of Eq.
(17) with higher order derivatives and obtain for the sums exponentials
multiplied by polynomials of arbitrary order in x. Let us first notice that any z
derivative of Eq. (17) has a sum written down in terms of Laguerre
polynomials of argument x/(1 — z):

., _ Xz z | x
TG L) = (1~ 2) 3/2<exp - 1)(1_:;> L;uz)(I__;)

We add easily an arbitrary number of such terms:

e F(x,0) = i L2 (x)z" ( Y d,C ">

AT A

where dy =1, d; =—1, and the other d, are arbitrary. If the {a,(0)}
corresponding to the lhs of Eq. (19) are given as input into Eq. (9¢), then by
calculating the a,(r) and substituting into (1a) we build a family of solutions
where the initial conditions correspond to exponentials multiplied by
arbitrary polynomials of arbitrary order g. Of course other families of
solutions can be deduced from Eq. (17).

T T T

e*Flx,0)= 42 ¢ x[+!§K]

~ o

~

801—“0

—~
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T T
1.5 3
e*F(x,0) =Vze™X (1. 84X")
105
10
—_ 1= 0
- t=1 |
.............. t= 5§
— t zoo
" ! | | | | !
1] 1 2 3 b 5 ] 7

Fig. 4

(1ii) Another simple family can be obtained from linear combination of
Eq. (17) for different z values,
n—2
1 _lezszz)(x) 2Pz P72
2 =0

P

1 Z, Xz z, Xz,
- _ — 20
2= 2) [(1—z1>3/2“pz1—1 <1—z2)3’26"p22—1] (20}

I -3
Fix0)e" (VB [(VI) e? -(vVZ) e 2]

A

Fig. 5
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In these examples Eqs. (19)-(20) represent e*F(x, 0), so that the arbitrary
parameters z, d,,,... Or z,, z, are restricted in such a way that the rhs of these
equations represent positive functions for x > 0, although there also exist
examples violating positivity at ¢ = 0 and not for ¢ > 1, > 0.

In Fig. 3 we plot F(x, t) corresponding toz = 4, d, = {5,d, = 0forp > 2
in Eq. (19), and in Fig. 4,z = %,d, = %, d; = —%, d, = 0 for p > 3. In both
cases near the largest F — 1 zero we remark the same small effect as the one
discussed previously in Fig. 1. In Fig. 5 we plot Eq. (20),z; = %, z, = 2, having
at t = 0 a negative part which disappears for 1 < ¢, < 2 and higher 7 values.

5. CONCLUSION

In this paper® we have studied the solutions of the Krook—-Wu'*’ model
and found that their features are very similar to those of the Tjon-Wu® one
studied in Ref. 3, the only difference being that the expansions are with
Laguerre polynomials L{}/? instead of L{”. Since in both models the time
dependence is provided by the same set a,(f), it follows that the comments
concerning the Krook-Wu conjecture'”) [general structure suggested by the
particular Krook—Wu solution (18) of the present paper] are the same in both
cases. If M, and M, do not satisfy very particular relations, then the slowest
dependences of the a,(t) are exp(—¢/3) and exp(—¢/2) and these time
dependences are already present (in a given combination) in the particular
Krook—Wu solution.

Finally we notice two possible extensions of our work, giving up the
present assumptions of isotropic collisions and a spatially homogeneous gas;
this has already been done for the Krook-Wu or Bobylev particular
solution.t->7)

APPENDIX A
Al. Bound on A,/ Ay 2, me[0,n—2], n22. We recall
A= (2n + 51127 2 (n + 2)!
so that
A/ Amtn —m—2 = (20 + S)Y[(n + 2)! ]

with

_@m 4 5)!U 20— m) + 171 _

(m + 2)! (n — m)! i

B

me[0,n— 2], n and m integers, n>2
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However, for n fixed and p < (n — 3)/2, 3, is increasing:

2p + ! [2n—p)— 1]
(» + 3! (n—p)!

B =Bt = Cr+3-n

It follows that f,™ > B,° and finally

A A, AP +5) 2

< =
;tm}"n—m72 ’{Oin—z (l’l + 2)(" + 1) 15

n

(A1)

and we remark that A(n) is a decreasing function of n.

A2. Bound on N(1) = ¥, ., a,2(t)4,. We multiply Eq. (9b) by 4,4, put
Y, = (n + 1)/(n + 3), and integrate from O to ¢:

a,*(0)4, = [exp(=27,0)]a,*(0), 1< 2ng + 1

a,* (1), = [exp(—2p,t )]{anz(O)in P2 f [exp2y,t)]an(t)in'?  (A2)
n+3 J,

x Y x:/Zam(r')a,,(z’)dz}, n =2 + 1)

m+p=n—2

From the Schwarz inequality and (A1) we obtain

Y APayal < AVn)Y 128 Pa,llAb e, < AP (N

m+p=n—2

We remark that exp(—yt) j (‘) (exp yt')| f(¢')] dt’ is a decreasing function of y and
from (A2) we get

anz(l)ln < [eXp( - 2ynot)]an2(0)}“n

an2(z)/1n < [exp(—2yn0t)]{an2(0)/1n + L A”z(n)
n+3

x Jr [exp (27, Vlan(t' )iy | N (') dl'}
0

Summing over n and using the Schwarz inequality for ¥ |a,|AY?(n + 3) 14,
we get a nonlinear integral inequality: ’

N(t) exp(2y,,t) < M(t) = N(©O) + 2C,, ft [exp(2yL JINC(r) dt’
0

- Aln) (A3)

=
" n=2no+2 (n+3)2
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We remark that

M 32 % = 2C, [exp(2y, ) IN3*M ~32 < 2C,, exp(—Yut)

Integrating both sides, we get
M 12(1) > N 12(0) — 10 4 S0 exp(—y, 1)

ng no

If N'2(0) < y,,/c,,» We can substitute into the rhs of {A3) and finally we find

(vno/cno)zfv(o)
(N0 + [y,/c, — N(©0)2] exp(y,,0)}°

- Yuo \o no+123 > 2n+3)2n+5) |
NO) < <c_> h <n0 + 3) [15,,=2,Z,0+2 (n+ )+ 2)n + 3)2]

o

A3. Bounds on Ny(t) =¥ |a,(1)|4,. We start from Eq. (9¢), multiply by
4., take the modulus of both sides, and bound the rhs,

no?

N < (A4)

if

M’nan({)\ = M’nan(o)\ exp(—ynt)7 n g 2n0 + 1

t

la(1)4,] < [CXP(—an)][lan(O)inl +n+ 37! J exp(y,t’) (AS)

0

, A, dt
x Y A A, ()
e 2 Ay

:|, n > 2("0 + 1)
We obtain upper bounds on the rhs by the substitution y, — Vaos And Ay
— A(n), A(n)/(n + 3)— (2ny + 5)"'AQ2ny + 2):

’Anan < ')‘nan(O)I eXp(—ynot)

il < [exp(—w)][lan(ow Ao ¥2)

2ny + 5

t
x f XP(inst) X Vil V) dz'J
0

Summing over n, we get a nonlinear integral inequality:

AQng +2) [

N, 1) < My{t) = Ny
o{2) exp(y,,1) ol) o(0) + 2, + 5 .

We note that

No*(t') exp(y,,t') di'  (A6)

d
7 Mg () = (2no + 5)"'A(2no + 2)M g *[exp(y,,1)IN,’

< (2ny + 5)"TAQ2ng + 2) exp(—7,,1)
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Integrating both sides, we get
No(O[M (1)1 ™1 > [1 — No(0)AQ2no + 2)[7,,,(2no + 5)17*
+ NO(O)[yn0(2n0 + 5] 'AQny + 2) exp(—7y,,1)]
! No(0) < 7,,2ng + 5)AQ2ny + 2)] 71
We can substitute into the rhs of (A6) and obtain
No(0)y,,(2ng + SIAQRny + 2)]7°
No(0) + [745(2n0 + 5)/A2no + 2) — No(0)] exp(y,,1)

No(1) < (A7)

if
Yno(Zno +3) _ 15n0 + 1 (2ng + 3)(2ng + 4)2ny + 5)
A(2n0 + 2) 2 ng + 3 (4”0 + 7)(4”0 + 9)

A4. Bounds on NJ(O) =73, Alajn+2)n+1)n+3—-¢q), g=1.
We start with Eq. (9a), which we differentiate ¢ — 1 times with respect to u.
Equating to zero the coefficients of ¥"* 3% we get a nonlinear system like

Eq. (9b) (where the nonlinear part appears for n = 2n, + 2), which we
integrate from O to ¢ [like Eq. (9¢)]

(n+2)(n+3 - q)la,l)]
=(n+2)(n+4-gln+3-q)a,0)+ qa,0)]e’
—qn+2) (n+4—qa,)

No(0) <

+e ! J\[ dr’ e"|:2(n +2)(n+4—qua,l)

0
1

+ qi cr Z a,(tYm+2) - (m+3—pa,(t)

p=0 m+m'=n—2
x(m’+2)'"(m’+3—-q+1+p):l (A8)

with (m + 2) - (m + 3 — p) = 1 if p = 0.1In (A8) the nonlinear part (last term
on the rhs) appears for n = 2n, + 2.

We take the modulus of both sides, bound the rhs by the modulus of the
different terms, multiply by 4, , bound 4,/4,,4, _,,_ . by A(2n, + 2), sum over n,
and find

N (1) < e7'[Ny(0) + gN, -, (0)] + N, (2)

t
+e’ J‘ e"[ZNq_l(t’) + A(2ny + 2)

]

q—1
) Cg,le(t')Nq_l_p(t'):l dr (A9)
p=0
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We could use (A9) in order to get bounds on N, (z). However, we remark that
A(2ny + 2) < 1, and substituting this value in the rhs of (A9), we get the same
inequalities as in Ref. 3.

AS5. Bounds on N(t) =Y _, a,*(t)4,. In Eq. (9b))letusputn +2=p
and b,(t) = a,_,(t); we obtain
+b,=(p+1) Y. bub,, N(@) =3 b(1)i,  (A10)
dt m+q=p 0 i
where Ip =J,-2=(2p + I)11277(p!)~'. First we want to prove
A/ Pmtp-m <1 for m integer € [0, p] (Al1)

We notice that 1,/4,4,_,, =1 for m =0 or p; equals (2p + 1)/3p < 1 for m
=1 or p—1; and equals A(p —2) <1 for me[2,p — 2]. Second, we
multiply (A10) by 1,b,, integrate from 0 to £, and sum over p:

N(t)e* = N(0) + tezf’prI;/z(pH)‘l i bub, wiy2dt (A12)
0 P m=0
Using (A.11) and the Schwarz inequality, we get
I3 buby- i, 1/2|<(Zb 2T Y02 yem) < N0)
X 6,220 + 7Y < [NOI[Y (p + 1) 2]
and finally
N(r)e* < N(©O) + 27,/6 f t X N32(r') dt’ (A13)
0

This integral inequality was also considered and solved in Ref. 3:
N(r) < NO){[1 ~ (n/\/6)NV2(0)]e" + (n//6)N 2(0)} ~2
' if NO)<6x2 (Al4)

Third we multiply (A10) by 1}/, integrate from 0 to 7, sum over p, and define
M(t) =Y (2,)"2b,(1)l; we get

t
M(r)e' < M(0) + Z J e’ > 1Bl ]bp,ml)T;,/z dr
p 0
Still using (A11), we finally get
M(t)e' < M(0) + f e’ M2(t')dt’
0

which is also an integral inequality solved in Ref. 3:

M O)}[1 = M(0)]e' + M(0)} ! if M(0) < 1
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Noticing that N(r) < M2(t), we conclude that N(z) < oo if either N(0) < 67~ 2
or M(O) < 1.
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